If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2-160=0
a = 2; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·2·(-160)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*2}=\frac{0-16\sqrt{5}}{4} =-\frac{16\sqrt{5}}{4} =-4\sqrt{5} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*2}=\frac{0+16\sqrt{5}}{4} =\frac{16\sqrt{5}}{4} =4\sqrt{5} $
| 4t^2+72=0 | | 3(e-4)=12 | | -x=-1x-12 | | 0.15(x)+40=0.05(x) | | -8(q+2)=7 | | 0.15(x)+40=0.05 | | 50=20/7(10x+35) | | 5/3(x-2/5)=-32/3 | | 15+5x=120 | | 40+14x=96 | | 7x-64=44 | | 3/6x+4=6 | | 6x+44-10+65=117 | | 3x+9=4x-20 | | 3x+7x=30-10 | | x+124=115 | | 7(6)+16=y+3 | | 7x=24+4 | | 10/7=q | | 1x+9=5x+2 | | 16/17=18/g | | -2a-16=-10a+30 | | 1/3t-8=-16 | | x-15/4=0.2 | | 8x-4=12x+x6+x | | 11c-7=117 | | 692x=40=4(3x+6) | | 4p+6=12p-21 | | 2(3e-7)=(6-e) | | (1/3y-2)-7=3 | | x+12+2x+20=11 | | x-12+2x+20=11 |